
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 19, NO. 7, JULY 2018 2305

Predicting Long-Term Trajectories of Connected
Vehicles via the Prefix-Projection Technique

Shaojie Qiao, Member, IEEE, Nan Han, Junfeng Wang, Member, IEEE, Rong-Hua Li, Member, IEEE,
Louis Alberto Gutierrez, and Xindong Wu, Fellow, IEEE

Abstract— The vehicle location prediction based on their
spatial and temporal information is an important and difficult
task in many applications. In the last few years, devices, such as
connected vehicles, smart phones, GPS navigation systems, and
smart home appliances, have amassed the large stores of geo-
graphic data. The task of leveraging this data by employing mov-
ing objects database techniques to predict spatio-temporal loca-
tions in an accurate and efficient fashion, comprising a complete
trajectory remains an actively researched area. Existing methods
for frequent sequential pattern mining tend to be limited to pre-
dicting short-term partial trajectories, at extremely high compu-
tational costs. In order to address these limitations, we designed
a prefix-projection-based trajectory prediction algorithm called
PrefixTP, which contains three essential phases. First, data
collection, connected vehicles equipped with sensors comprise
a vehicle grid and generate copious amounts of spatio-temporal
data, in order to communicate and share traffic information.
Second, model training, examining only the prefix subsequences,
and projecting only their corresponding postfix subsequences into
projected sets. Finally, trajectory matching, recursively finding
postfix sequences meeting the requirement of minimum support
count, and outputting the most frequent sequential pattern as
the most probable trajectory. Fundamentally, PrefixTP supports
three trajectory matching strategies which encompass all pos-
sibilities of prediction. Extensive experiments were conducted
using real world GPS data sets, and the results show, when
comparing predicted complete trajectories against partial short-
term trajectories with a guarantee of real-time forecasting, that
PrefixTP outperforms first-order, second-order Markov models,
and Apriori-based trajectory prediction algorithm.
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I. INTRODUCTION

CONNECTED vehicles enables any vehicle, anywhere,
to act as a smart node, collecting and sharing informa-

tion on vehicles, roads and the surroundings [1]. It follows
then, that the field of moving object databases (MOD) over
trajectory data accumulated by connected vehicles has seen a
surge of interest. This research, inclusive of large-scale and
variable trajectory data, urgently needs innovative, intelligent,
efficient and effective approaches to discover a large amount
of hidden knowledge in it [2], [3]. The increasing availability
of location-awareness technologies, such as GPS (Global
Positioning System) and WIFI (Wireless Fidelity) etc., have
resulted in huge volumes of spatio-temporal data, especially
in the form of trajectories, which are represented by sequential
patterns of vehicles, in a typical scenario, describing the
behavior of movements: containing frequently-visited areas,
users’ preferences on travelling itineraries, etc.

Vehicle location prediction, also known as trajectory predic-
tion (abbreviated as TP), has received increased attention by
researchers. An illustrative TP example for connected vehicles
is autonomous navigation when vehicle-to-vehicle (V2V)
navigation function does not work due to network
attacks or the communication signal is shielded.

Example 1: When vehicles lost the capability of V2V nav-
igation, connected vehicles can only employ autonomous
navigation to find appropriate routes. Unlike the short-term
time series prediction, the long-term prediction is typically
faced with growing uncertainties arising from various sources.
For example, the accumulation of errors make the prediction
more difficult. By discovering frequent sequential patterns
of connected autonomous vehicles, an advanced autonomous
vehicle system can efficiently process all the sensory data
and discover appropriate paths and avoids obstacles on such
paths.

The aforementioned example motivates us to propose novel,
scalable and effective vehicle location prediction approaches
based on massive trajectory data. Furthermore, location based
services (LBS) continue to increase in popularity, and more-
over, are becoming embedded in people’s daily life with the
widespread mobile technologies. If the LBS providers develop
sound methods to infer the user’s general itinerary in advance,
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this would provide an opportunity to recommend the most
relevant travel information so as to maximize target user’s
potential. For example, if a given system could effectively infer
the nature of a journey, for the user, is to visit friends or family,
then the system could suggest taxi-hailing APPs (applications)
that may provide special offers or discount prices. Moreover,
if the system could decipher the adjacent users who have
similar specifications for taxis, then a triggered response for
a carpooling ride sharing option can be recommended to
the given subset of users. Another example is if the system
could suggest optimal candidate roads, in order to avoid
additional time in traffic, based on historical traffic data,
time, weather and additional external factors. This recom-
mendation would leverage trajectory prediction techniques by
analyzing individuals’ movement behaviors. This can help
provide better LBS and contribute to users’ time management
as well.

There is an ever-increasing interest in trajectory data-
bases with moving objects [4]. Trajectory prediction is a
very challenging and practical problem in MOD due to the
following reasons [5], [6]: (1) The uncertainty of moving
objects (including connected vehicles), traditional TP methods
focus on predicting short-term partial trajectories, and existing
TP algorithms have relatively low prediction accuracy for
long-term predictions, and even do not works well for inferring
a continuous and complete trajectory. (2) Traditional distance
vector based TP methods can only be applied to predict
possible paths within fixed road networks. When connected
vehicles remain in road junctions due to traffic jams or other
complex traffic condition, they cannot provide optimal routes.
(3) Existing TP approaches often perform poorly when faced
with environmental and other external factors, such as traffic
jams, inclement weather, etc. (4) The computational cost of
classical frequent sequential patterns based TP methods is very
high, which lies in generating a large volume of candidate
sequences.

Mining frequently patterns from trajectory databases is a
commonly-used approach to predict paths, and can find that
the Apriori-like sequential pattern mining algorithm bears the
following computational overhead [7]:

(1) Potentially a Huge Number of Candidate Sequences:
Because it needs to enumerate all the possible permutations
of items in a candidate trajectory sequence, the Apriori-based
approach may generate a large set of candidate sequences. For
example, if there are 10000 frequent trajectories of length-1,
i.e., 〈s1〉, 〈s2〉, . . . , 〈s10000〉, an Apriori-like method may
generate 10000×10000+ 10000×9999

2 = 149,995,000 candidate
trajectories.

(2) Difficulties at Predicting Long-Term Trajectory Sequen-
tial Patterns: A long trajectory pattern must increase from
a combination of short ones, but the number of candidate
sequences is exponential to the length of trajectory patterns to
be discovered. For example, suppose there is a single trajectory
of length 50, s = 〈s1, s2, . . . , s50〉, in the trajectory database,
and the minimum support threshold is set to 1, the Apriori-
like method has to generate 50 length-1 candidate sequences,
50 × 50 + 50×49

2 = 3725 length-2 candidate sequences,

(
50
3

)
= 19600 length-3 candidate sequences,1· · · .

Obviously, the total number of candidate sequences is greater

than
∑50

i=1

(
50
i

)
= 250 − 1 ≈ 1015.

(3) Multiple Scans of Trajectory Databases: Because the
length of each candidate trajectory increases by one through
each scan of trajectory database. For example, the Apriori-like
algorithm must scan the database at least 20 times to find a
sequential pattern {(abcd)(abcd)(abcd)(abcd)(abcd)}.

With the goal of overcoming some of the challenges in TP
approaches based on mining frequently occurring patterns, this
research makes the following original contributions:

(1) We apply an efficient prefix-projection technique
to find frequent trajectory patterns of connected vehicles,
which examines only the prefix subsequences and projects
only their corresponding postfix subsequences into projected
sets.

(2) We propose an incremental trajectory matching approach
which includes three matching strategies to recursively mine
frequent sequential patterns over postfix sequences, which
suits to forecast long-term and variable length of trajectories
in a connected vehicle environment.

II. RELATED WORK

Predicting long-term trajectories with uncertainty in
MOD or a connected vehicles environment has recently been
receiving increased attention. Existing work relevant to TP
mainly focuses on discovering frequent patterns [8], [9].
Monreale et al. [10] extracted the frequently visited sequences
of regions and detected the best matching one in the
T-pattern Tree. But, the computational complexity of building
T-pattern Tree is very high. Many of the existing prediction
techniques only take into consideration the geographic features
of trajectory points. Ying et al. [11] proposed an approach for
predicting the next location of objects by geography and the
semantic information of trajectories. It follows, though, that
this method requires the calculation of a Semantic Score for
each candidate path, which produces additional computational
cost. Qiao et al. [5] proposed a three-in-one TP model, which
predicts possible trajectories of moving objects with relative
uncertainty, while the generation of frequent patterns tree
needs multiple scans of databases. Goodall [12] proposed
new real-time location prediction techniques in a connected
vehicle environment, which is expected to result in reduced
delays and improve traffic flow. But, the results show that the
reduction in delay depends on the data quality of connected
vehicles. A real-time traffic state estimation framework [13]
was proposed to predict traffic density, which can improve
the accuracy of autonomous navigation. But, this study does
not take into account non-connected vehicle data, e.g., social
media data.

Markov models are commonly used to discover frequent
trajectory patterns [14], [15]. Research was contributed by

1It is worthwhile to note that Apriori does reduce the search space.
Otherwise, the number of length-3 candidate sequences would have been
50× 50 × 50+ 50× 50 × 49+ 50×49×48

3×2 = 267, 100
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Qiao et al. [2], which proposed a HMM based trajectory
prediction algorithm, which can self-adaptively select impor-
tant parameters. However, this method still cannot well handle
the answer-loss problem and the state retention problem due
to discontinuous chain of hidden states. Jeung et al. [16]
used HMM to discover trajectory patterns by utilizing the
effectiveness of space-partitioning methods. However, this
approach cannot be applied to predict future locations of
moving objects due to the spatio-temporal characteristic of
trajectory data. In order to predict pedestrian movement,
Asahara et al. [17] proposed a mixed Markov-chain model,
which has an observable parameter like a HMM, but with nat-
ural variation: the unobservable parameter is fixed during the
state transition. In summary, there are three main drawbacks in
HMM-based trajectory prediction models: (1) Markov models
do not consider the discontinuous chain of hidden states, and
the state retention problem can greatly degrade the accuracy
of location prediction. (2) HMM-based models do not avoid
the answer-loss problem, that is, two similar trajectories are
viewed to be two unrelated trajectories after partitioning the
grid of geographic space, which will affect the accuracy of
prediction. Lastly, (3) HMM-based prediction models depend
on the training data. For the irregular spatio-temporal trajec-
tory data, the movement rules cannot be easily represented by
Markov chains due to the uncertainty movement behavior of
connected vehicles, which can lead to the loss of continuous
location information.

The work published in Science by Song et al. [18], which
proved that there can be 93% potential for predictability in
user mobility by measuring the entropy of each trajectory. The
work motivates us to predict movement behavior of connected
vehicles. Recent work in TP, such as the aforementioned, has
begun to attract lots of researchers which has lead to a number
of new state-of-the-art approaches as introduced in [19]–[21].
In order to support short-term traffic state prediction,
Pan et al. [22] proposed a multivariate normal distribution-
based best linear predictor. However, the proposed approach
cannot capture the moving-bottleneck effect due to limita-
tions in the proposed framework. Ding et al. [23] proposed
a network-matched trajectory-based moving-object database
mechanism. But it cannot select important parameters in a
self-adaptive manner. Two efficient route planning strategies
are proposed [24], where several effective techniques are
employed to avoid both unnecessary calculations on large
graphs and excessive re-calculations caused by updating traffic
conditions. Zheng et al. [25] discovered the classical travel
sequences among locations relative to the interests of these
locations and users’ travel experiences. However, the proposed
method is mainly used for recommending locations of interest
instead of suggesting a complete trajectory. Zhou et al. [26]
proposed a “semi-lazy” approach to path prediction that builds
prediction models using dynamically selected reference trajec-
tories without having to tune several parameters. This method
cannot be applied to a connected vehicle environment due to
its limitations on spatial data.

In regard to the aforementioned research on TP, the fol-
lowing challenges were identified: (1) most of existing
TP methods are not applicable for predicting long-term

Fig. 1. TP framework based on prefix-projected patterns growth.

trajectories [27]; (2) it is time intensive to discover frequent
sequential patterns of moving objects from massive trajectory
points, because it requires the MOD to be scanned sev-
eral times in order to find postfix patterns; (3) the current
TP approaches mainly focus on predicting single movement
patterns, and cannot be applied to infer multiple types of
patterns in complex scenarios; (4) due to the uncertainty
of spatial-temporal data, the prediction accuracy cannot be
guaranteed, and prediction bias can be prevalent.

The privacy issue of frequent sequential pattern mining in
a connected vehicle environment is very important, because
we have to protect the confidential information of drivers in
connected vehicle networks. In order to investigate situations
where releasing frequent sequential patterns can compromise
the privacy of individuals, Jin et al. [28] proposed two privacy
protection approaches, i.e., k-anonymity and α-dissociation,
which can greatly reduce privacy disclosure risk carried by fre-
quent sequential patterns. Weber [29] introduced new security
and privacy challenges in Internet of things, and emphasized
the necessarily of establishing an adequate legal framework of
protecting individuals privacy. Mhatre et al. [30] proposed a
procedure to protect the privacy of data frequent sequential
patterns over progressive databases. The scalability of the
proposed method should be further explored from a single
node system to a multi-party scenario.

III. TRAJECTORY PREDICTION FRAMEWORK BASED

ON PREFIX-PROJECTION TECHNIQUE

In this section, we will introduce a new trajectory prediction
framework for connected vehicles based on prefix-projected
pattern growth, its working mechanism is depicted in Fig. 1.

The framework contains four essential modules: (1) In the
data collection module, a large amount of trajectory data
can be collected by a vehicle cloud of connected devices
(i.e., sensors, camera, communication base); (2) ETL (Extract-
Transform-Load) techniques are applied to remove noise,
extract complete trajectories comprising of a series of
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spatio-temporal points, partition a complete trajectory into par-
tial segments based on time and distance, and lastly transform
raw data into an acceptable format; (3) The feature extraction
module works to retrieve important feature of trajectories
and group them into clusters, then transform feature data
into trajectory sequential patterns; (4) The prefix-projection
technique is applied in order to discover frequent sequential
patterns and obtain a candidate set, then different trajectory
matching strategies are applied to infer a complete path based
on frequent visits.

Fig. 1 is a generic framework and can be applied to most
TP scenarios for connected as well as unequipped vehicles
without sensors. In particular, the optimal path information
discovered by the proposed prefix-projection technique can be
shared among connected devices by communication infrastruc-
tures in the vehicle cloud.

In the phase of data collection, we employed the vehi-
cle cloud model presented in [31]. The vehicular cloud of
connected vehicles is different from the Internet cloud that
is created and maintained by a cloud provider, which is
temporarily created by inter-connecting resources available in
the vehicles and Road Side Units [31]. In addition, resources
are unlike the ones in a traditional cloud. Each vehicle has
three kinds of resources, that is, sensors, data storage, and
computing. The sensor is able to self-actuate as well as to
detect events. Sensors are directly connected to the Internet
of Vehicles, in order to be read and controlled by an external
system. Data storage devices are used to record vehicle data
collected from sensors and applications. It provides functions
of data sharing and communication among connected vehicles.

The resources are inter-networked by purely peer-to-peer
connections in the vehicular cloud [31]. Aiming to obtain
the real-time road and traffic information from other vehicles,
each vehicle share resource directly with others. In order
to achieve data sharing and efficient communication, there
is a hub vehicle with the highest value of centrality and
connectivity in this cloud. Then, it is responsible for handle the
process of resource sharing as well as other cloud operations.
By the vehicle cloud model, each participant calculate and
share the optimal route by the proposed prefix-projection-
based TP model as introduced in the following sections.

IV. PRELIMINARIES

This section works to introduce fundamental concepts which
help to describe the TP problem on mining frequent trajecotry
patterns based on concepts introduced in [7].

Definition 1 (Trajectory): T = {α1, α2, α3, . . . , αn} repre-
sents a trajectory, where αi = 〈longi tude, lati tude, time〉,
and αi ∈ P , P is a set of spatio-temporal points.

Definition 2 (Trajectory Sequence): Given a trajectory T ,
after feature extraction and transformation, a trajectory
sequence is obtained, denoted by α = 〈α1, α2, . . . , αi 〉, α ⊆ T ,
α is an ordered list of spatio-temporal points by the
timestamp i , and is called a trajectory sequence. The number
of points in a trajectory sequence is called the length of the
sequence. A sequence with length l is called an l-sequence.

Definition 3 (Sub-Trajectory): β = 〈β1, β2, . . . , βp〉 is a
sub-trajectory of sequence α = 〈α1, α2, . . . , αq〉, p ≤ q ,

if there is integers 〈i1, i2, . . . , i p〉 (1 ≤ i1 < i2 < . . . < i p),
〈 j1, j2, . . . , jp〉 (1 ≤ j1 < j2 < . . . < jp), and i1 ≤ j1,
βi1 = α j1 , βi2 = α j2, . . . , βi p = α j p , then β is called a sub-
trajectory of α or α is called a super-trajectory of β, denoted
by β � α.

Definition 4 (Frequent Trajectory Sequential Patterns):
Given a positive integer ξ as the support threshold, a trajectory
sequence α is called a frequent trajectory sequential pattern
in trajectory database T if the sequence is contained by
at least ξ tuples in the database, i.e., supportsT (α) ≥ ξ .
A frequent trajectory with length l is called an length-l
pattern.

Definition 5 (Prefix Sequence): Given a trajectory sequence
α = 〈α1, α2, . . . , αp〉, and β = 〈β1, β2, . . . , βq〉, p ≤ q , if and
only if α1 = β1, α2 = β2, . . . , αp = βp, then α is called a
prefix sequence of β.

Definition 6 (Projection): Given two trajectory sequences α
and β, β is a sub-trajectory of α. A subsequence α′ of α is
called a projection of α w.r.t. prefix β if and only if: (1) β is
the prefix sequence of α′, and (2) there is no proper super-
trajectory α∗ of α′ (i.e., α′ � α∗ but α′ �= α∗) such that α∗ is
a subsequence of α but also has prefix β.

Definition 7 (Postfix Sequence): Given a trajectory
sequence α = 〈s1, s2, . . . , sn〉 is the projection of
β = 〈s1, s2, . . . , sm−1, sm〉, where m ≤ n, a trajectory
sequence γ = 〈sm+1, . . . , sn〉 is called the postfix sequence of
α w.r.t. prefix β, denoted as γ = α  β. We denoted
α = β ⊕ γ , where  and ⊕ represent subtraction
and combination operations between partial trajectories,
respectively.

Example 2: 〈a〉, 〈aa〉, 〈a(ab)〉 and 〈a(ab)a〉 are pre-
fix sequences w.r.t a trajectory 〈a(ab)(abc)(def )〉, but
neither 〈ab〉 nor 〈a(b)a〉 is considered to be a prefix.
〈 (ab)(abc)(def )〉 is a postfix of the same sequence w.r.t.
prefix 〈a〉, 〈 (_b)(abc)(def )〉 is a postfix w.r.t. prefix 〈aa〉,
and 〈 (abc)(def )〉 is a postfix w.r.t. prefix 〈ab〉.

Definition 8 (Projected Set): Given a trajectory α is a
frequent sequential pattern in the trajectory database T , an
α-projected set, denoted as T |α, is the collection of postfix
sequences in T w.r.t. prefix α.

Definition 9 (Trajectory Support Count): Let α be a sequen-
tial pattern in the trajectory database T , β be a trajectory
having prefix α. The trajectory support count of β in
α-projected set T |α is the number of trajectory sequences γ
in T |α such that β � α ⊕ γ , denoted as supportT |α(β).

Before matching trajectories, frequent trajectories must be
mined. Discovering frequent sequential patterns is a recur-
sive process of mining, and we can obtain the following
properties [7].

Lemma 1: Assume that α is a trajectory pattern composed
of l spatio-temporal points, 〈β1, β2, . . . , βm〉 is the set of all
length-(l + 1) trajectory sequential patterns viewing α as its
prefix sequence. The complete set of sequential patterns having
prefix α, with the exception of α, can be partitioned into m
different subsets. The j th subset (1 < j < m) is the set of
trajectory patterns having prefix β j .

Based on Lemma 1, the projection set of trajectories is par-
titioned as needed, which can reduce the number of traversed
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points, and choose the most probable candidate items to be
extended.

Lemma 2: Let α and β be two patterns in trajectory data-
base T such that α is a prefix sequence of β, then:

1) T |β = (T |α)|β;
2) for any sequence γ having prefix α, supportT (γ ) =

supportsT |α(γ ), and
3) The size of α-projected set cannot exceed that of T .

Lemma 2 presents the relation between the frequent trajec-
tory patterns α and β, having prefix α. Since T |β = (T |α)|β,
all frequent sequential patterns over β via the projection
set of α can be discovered. In addition, supportT (γ ) =
supportT |α(γ ) can guarantee that the incrementally discov-
ered sequential pattern β, having prefix α, is a frequent
trajectory.

Corollary 1: The trajectory pattern α is frequent if α meets
the properties given in Lemma 1 and Lemma 2.

V. TRAJECTORY PREDICTION BASED

ON PREFIX PROJECTION

A. Working Mechanism

Based on the above preliminaries, we can define the TP
problem as an inference of the continuous trajectory sequential
pattern α, using the postfix sequence γ of α, where γ is
viewed as the prefix sequence when forecasting the subsequent
trajectory of α. The prefix-projection based TP algorithm
includes the following primary steps:

(1) Mine length-1 patterns. Scan trajectory database T
once to discover all frequent items which have support
count greater than the given minimum support count.
Each of these frequent items is a length-1 pattern, the set
of length-1 patterns is denoted as F .

(2) Partition the space. The set of trajectory sequential
patterns T can be divided into |F | subsets, and each item
in the subset corresponds to a single length-1 pattern p1,
having p1 as its prefix sequence, where |F | represents
the number of items in F .

(3) Discover frequent trajectory sequential patterns. This
step contain two operations: constructing the projected
sets and discover each frequent trajectory pattern recur-
sively.

(4) Predict future location points via trajectory
matching. Given a projected set T |α, the incremental
item having prefix α will, with certainty, appear in T |α.
Each time a frequent sequential pattern extends to a
next probable location, the following occurs: traverses
the projected set T |α, calculates the support count of
the first item in a sequential pattern, and finds such an
item having count greater than the support threshold of
the extending item w.r.t. α, then the sequential pattern is
divided, w.r.t. the extending item, into the corresponding
subset. The above process is recursively performed on
the projected sets.

B. Frequent Sequential Patterns Mining

The following is a detailed example of mining frequent
trajectory patterns.

TABLE I

EXAMPLE OF TRAJECTORY SEQUENTIAL PATTERNS

Example 3: Suppose there exist the following set of trajec-
tory patterns given in Table I with min_sup = 2.

According to Table I, the item set is {a, b, c, d, e, f, k}, and
we can obtain the support count of each item, i.e., 〈a〉:7, 〈b〉:6,
〈c〉:5, 〈d〉:6, 〈e〉:6, 〈 f 〉:2, 〈k〉:1, where the number following
each item represents the support count. Given that the support
count of 〈k〉 is less than min_sup, this item is discarded.
The item set {a, b, c, d, e, f } includes all length-1 sequential
patterns and is employed for the next step of mining. The
next step is to construct the projected set for each length-1
sequential pattern.

Consider the example 〈a〉 which shows the detail of finding
length-l patterns. The 〈a〉-projected set, and the incremental
mining process is presented in Table II.

As shown in Table II, in the first round of scan, 〈a〉-projected
set is found consisting of six postfix sequences: {〈ababcdef 〉,
〈bde〉, 〈bdc〉, 〈bce〉, 〈cke〉, 〈de f 〉, 〈de〉}, By scanning
〈a〉-projected set once, all the length-2 patterns having prefix
〈a〉 can be found. They are given as: 〈ab〉:5, and 〈ad〉:2. Note
that 〈ac〉:1 is discarded because it is less than the minimum
support count.

Recursively, all trajectory sequential patterns having pre-
fix 〈a〉 can be partitioned into two subsets: (1) those having
prefix 〈ab〉, and (2) those having prefix 〈ad〉. These subsets
can be mined by constructing respective projected sets, and
mining each recursively.

The 〈ab〉-projected set consists of three postfix sequences:
〈abcdef 〉, 〈cdef 〉, 〈ce〉, 〈de〉, and 〈dc〉. By scanning
〈ab〉-projected set once, we find the length-3 patterns having
prefix 〈ab〉 is 〈abd〉. The 〈abd〉-projected set can be con-
structed and recursively mined in a similar fashion. However,
in the third round of scan, since there is no expectation of
generating any frequent subsequences from a single sequence,
the processing of 〈abd〉-projected set terminates.

Similarly, the 〈ad〉-projected set is comprised of two postfix
sequences: 〈e f 〉 and 〈e〉. By scanning 〈ad〉-projected set once,
the length-3 sequential patterns having prefix 〈ad〉 is found,
given as 〈ade〉. The 〈ade〉-projected set is constructed and
recursively discovered. The processing of 〈ade〉-projected set
terminates, because there are not any frequent subsequences
in the 〈ade〉-projected set.

Finally, we can find trajectory patterns having prefix 〈a〉
consist of five trajectories including 〈a〉, 〈ab〉, 〈ad〉, 〈abd〉,
and 〈ade〉.

Similarly, we can find sequential patterns having prefixes
〈b〉, 〈d〉, 〈e〉, 〈 f 〉 by constructing 〈b〉, 〈d〉, 〈e〉, 〈 f 〉-projected
sets, respectively, and mining them.
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TABLE II

EXAMPLE OF MINING FREQUENT SEQUENTIAL PATTERNS

Fig. 2. Example of trajectory prediction based on frequent patterns.

C. Trajectory Matching

After mining frequent trajectory sequential patterns, the
TP problem is simplified to only match frequent trajectory
sequential patterns. Based on the discovered sequential pat-
terns in Example 3, Fig. 2 gives an example of trajectory
prediction by prefix-projected sequences.

1) Prediction: Suppose there is a given trajectory sequence
S = 〈e c a b〉 in Fig. 2, we will predict the future most
probable location w.r.t. S. First, scan the set of frequent
trajectories, and find frequent sequential patterns having prefix
S = 〈e c a b〉. However in this case, the system returns the
result “Not found”, and then compresses the given trajectory
by extracting the postfix sequence having prefix 〈a〉, that is
S1 = 〈c a b〉. Thus, view S1 as a new given trajectory to pre-
dict. Next, repeat the above process until the postfix sequence
〈a b〉 is found, and after the step of trajectory matching, we can
find a frequent sequential pattern 〈a b d〉 having prefix 〈a b〉.
Lastly, output the predicted partial trajectory 〈d〉. In the phase
of trajectory matching, we adopt three strategies [32] which
will be introduced in the following.

In the PrefixTP algorithm, trajectory matching is used to
predict the unknown locations of moving objects after frequent
trajectory patterns have been found. The given trajectory of
each moving object has to be compared with movement rules
generated from frequent trajectories. In this study, we apply
three matching strategies for ranking a partial trajectories over
the database of movement rules. Let X = (x1, x2, . . . , xm) be a
partial trajectory of a moving object, for which we are seeking
its most probable location.

a) Complete matching: The complete matching strat-
egy consists in finding all movement rules R = X ⊕ Y ,
where X is a complete frequent sequential pattern, and
Y = (y1, y2, . . . , yn), which represents n continuous location
points. The partial trajectory Y can be used to predict a
probable trajectory of a moving object.

b) Tail matching: The tail matching strategy does not
need to consider other information from the partial trajec-
tory X except for the last visited item, xm . The method can
discover the movement rules R = xm ⊕ Y , where xm is a
frequent item, and Y is a frequent postfix sequence. The result
of this strategy is a list of items ordered by descending values
of the support count. The tail matching strategy can discover
movement rules even for very short partial trajectories.

c) Longest tail matching: The longest tail matching strat-
egy is a compromise between the above two methods. With
regard to a given trajectory X , then this method finds all
movement rules R = X ′ ⊕ Y , where X ′ � X is a part of
trajectory X , and X ′ and Y are frequent trajectory patterns. The
method returns the movement rule weighted by the relative
coverage of X .

D. Algorithm Description

Based on the aforementioned description, a new prefix-
projection based TP algorithm for connected vehicles called
PrefixTP is shown in Algorithm 1.

Algorithm 1 contains the following steps: (1) obtain the first
point s0 from a given trajectory s and employ the function
getPrefix to obtain frequent sequential patterns having pre-
fix s0. If this fails, choose the subsequence of s, starting from
the next trajectory point and give that as input for the PrefixTP
algorithm to predict recursively (lines 1-3). (2) Each obtained
frequent sequential pattern p in P is traversed (line 5), where
P is a set of frequent patterns having prefix s0, and it is
determined if the length of p is larger than that of s plus n.
If not, p represents an invalid sequence which does not
meet the requirement needed for prediction (lines 6-7). Then,
another candidate sequence from P is chosen to match s,
if that fails, then the loop is exited, where i represents the
timestamp of a trajectory sequence (lines 8-13). If the length
of p meets the requirement, then p is added to the result set P ′
(lines 14-15). (3) The frequent sequential patterns in P ′ are
sorted by the support count in descending order (line 16).
If P ′ is empty, then the subsequence of s is chosen and
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Algorithm 1 Prefix-Projection Based TP Algorithm for
Connected Vehicles
Input: A given trajectory sequence s w.r.t. a vehicle, the

number of prediction steps n.
Output: The most possible trajectory.
1. P ←getPrefix(s0);
2. if P = ∅ then
3. return PrefixTP(s.postfix(1), n);
4. P ′ ← ∅;
5. for each p ⊂ P do
6. if p.len < (s.len + n) then
7. continue;
8. i ← 0;
9. while i < s.len do

10. if pi �= si then
11. break;
12. i = i + 1;
13. match(p, s) //perform trajectory matching strategies
14. if i = s.len then
15. P ′.add(p);
16. P ′.sort();
17. if P ′ = ∅ then
18. return PrefixTP(s.postfix(1), n);
19. output P ′0.postfix();

used as input for the PrefixTP algorithm to mine recursively
(lines 17-18). (4) Lastly, the postfix sequence (having prefix s)
which is ranked first (denoted by P ′0) having the maximum
support count in P ′ (line 19) is given as output.

1) Analysis: The correctness and completeness of the algo-
rithm can be justified by Lemma 1 and 2. We analyze the
efficiency of the algorithm as follows.

(1) No candidate sequence needs to be generated by
PrefixTP. PrefixTP only grows longer trajectory patterns
from the shorter frequent ones. It does not generate any
candidate sequence nonexistent in a projected set.

(2) Projected sets keep shrinking. A projected set is
smaller than the original one because only the postfix
sequences of a frequent prefix are projected into it.

It is worthwhile to note that the number of prediction steps
can be specified by users. For example, if n is designated to
be a large number, i.e., n ≥ 5, this implies PrefixTP will be
a long-term TP algorithm. In general, relative to traditional
TP algorithms, e.g., the HMM-based TP approach [2], if we
want to obtain a high accuracy of prediction, n must be less
than 5. On the contrary, PrefixTP algorithm can obtain a high
prediction accuracy for long-term trajectory prediction, and we
will prove this point in Section VI-B3.

VI. EXPERIMENTS

A. Experimental Setup

In the following experiments, trajectory datasets were gen-
erated by 33,000 GPS-enabled connected taxis in a vehicle
cloud over a period of 3 months [33]. By the V2V networks
of taxis, the drivers can share traffic and road information

TABLE III

DESCRIPTION OF GPS DATA

in order to improve the quality of driving services. A more
detailed description of the dataset is given in Table III.

In experiments, we partition GPS data into the training set
and testing set, and the training set contains 80% portion of
data and we randomly select different trajectories from the
remaining 20% portion of testing data to predict trajectories.

All algorithms were implemented on Eclipse Juno IDE,
using the Java programming language. The hardware environ-
ments included a Intel(R) Core(TM)2 Duo P8700 2.53GHz
CPU, with 3.0GB RAM.

In order to demonstrate the performance of the proposed
algorithm, we use the evaluation measure of prediction accu-
racy (abbreviated as PA) which is defined below [2].

Definition 10 (Hit Rate): Given a trajectory sequence S =
{s1, s2, . . . , sk}, the predicted trajectory sequence T =
{t1, t2, . . . , tn} over S, where k < n. dist (m, n) represents
the Euclidean distance between points m and n, and θ is a
distance threshold. Then,

The formula dist (si , ti ) < θ implies a single hit in predic-
tion, the hit rate is defined as follows:

H (si , ti ) =
{

1 if dist (si , ti ) < θ

0 if dist (si , ti ) > θ
(1)

Definition 11 (Prediction Accuracy): Given a trajectory
sequence S and a predicted trajectory sequence T , the pre-
diction accuracy is defined to be:

Accuracy =
∑n

i=1 H (si , ti )

|T | , si ∈ S (2)

where |T | represents the length of points in T .
It is worthwhile to notice that if a matched frequent trajec-

tory pattern S is not found, which implies we cannot find
a predicted trajectory sequence T , so the given trajectory
sequence S will not be taken into consideration.

1) Comparison Algorithm: In our background research we
have encountered many examples in which Markov models
have been used to discover frequent trajectory patterns. The
state-of-the-art work is a self-adaptive parameter selection
TP approach via hidden Markov models [2], which has a
high accuracy of prediction with the guarantee of exceptional
time performance. In this study, we implement two kinds of
HMM-based TP approaches: 1st-order Markov model which
implies the position of the i th timestamp is only determined
by the state of (i − 1)th timestamp, 2nd-order Markov model
(representing higher-order Markov model) which implies the
position of the i th timestamp is determined by the state
of (i − 1)th and (i − 2)th timestamps.
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Fig. 3. Prediction accuracy comparison among different algorithms. (a) Small
dataset. (b) Large-scale dataset.

In addition, we implement a Apriori-like TP algorithm,
called AprioriTP. The difference between PrefixTP and
AprioriTP lies in AprioriTP has to generate all the possible
permutations of items in a trajectory sequence and needs
multiple scans of trajectory databases. Because PrefixTP only
grows longer sequential patterns from shorter ones, it does not
generate nonexistent in a projected set which is smaller than
the original one, the number of database scan by PrefixTP
can be reduced when comparing to AprioriTP algorithm.
In the following section, we will evaluate the effectiveness
and efficiency of these TP algorithms against PrefixTP.

B. Prediction Accuracy Comparison and Analysis

1) Accuracy Comparison Under Different Training Data:
In this set of experiments, we begin by first observing the TP
of algorithms in a small and a large-scale trajectory dataset.
The results are presented in Fig. 3, where x-axis represents the
number of trajectories in the training set, and y-axis is PA.

According to Fig. 3, the following can be observed:
(1) PA of different TP algorithms grow with the number
of trajectories in the training set, and PrefixTP outperforms
HMM-based TP approaches. PA can be, in average, improved
by 49.6% and 24.5% on the small dataset, and improved by
15.9% and 4.6% on the large-scale dataset when compared to
1st-order Markov and 2nd-order Markov models, respectively.
This is because 1st-order and 2nd-order Markov prediction
models only take into consideration the influence of its previ-
ous one and two states, which does not utilize the complete
historical behavior of moving objects. Accordingly, as the
number of trajectories grow, the improvements of PA w.r.t.
HMM-based TP approaches are limited. Whereas, PrefixTP
discovers frequent sequential trajectory pattern with different
length of trajectories, that is, all movement states in a complete
trajectory are taken into consideration, so it can achieve a
higher PA value. (2) The PA of PrefixTP is slightly higher
than that of AprioriTP. The evidence for this claim is that
AprioriTP may generate several candidate sequential patterns,
and the average prediction accuracy will degrade duo to the
large number of candidate trajectories. However, AprioriTP
outperforms 1st-order Markov and 2nd-order Markov models.
Because its working principle is similar to PrefixTP, both aim
to mine frequently occurring sequential patterns.

2) Generality Evaluation: In order to validate the generality
of PrefixTP, we divided the dataset from T-drive project [33]
by Microsoft Research Asia into eight categories based on

Fig. 4. Prediction accuracy comparison under different datasets.

drivers’ experiences, and observed the PA among these four
algorithms. The experimental results are shown in Fig. 4.

By Fig. 4, it can be seen that PrefixTP preforms bet-
ter in all categories of trajectory datasets when compared
with HMM-based TP algorithms. The average gaps between
PrefixTP and 1st-order as well as 2nd-order Markov prediction
models are 19.5% and 7.8%, respectively, which strongly
suggests that Prefix can be generalized to various TP scenarios
including connected and unconnected V2V networks. The
evidence for this claim is prediction performance based on the
real movement behavior extracted from GPS data by mining
frequent prefix-projection sequential patterns. Thus, it can be
concluded with some level of certainty, that PrefixTP can
generalize effectively, within diverse TP environments, and
forecast short-term and long-term moving behaviors without
compromising on performance. In addition, we find the PA
values of PrefixTP and AprioriTP are similar, even AprioriTP
outperforms PrefixTP on dataset D4. Because the trajectories
in dataset D4 contain more regular movement behaviors than
other datasets, AprioriTP can discover more frequent trajectory
sequential patterns than PrefixTP from dataset D4, and this is
a disadvantage for prefixTP algorithm. We can also find that
HMM-based TP algorithms, i.e., 1st and 2nd-order Markov
models, produce lower prediction accuracy by comparing
with PrefixTP and AprioriTP algorithms. This is because
HMM-based TP approaches employ the conditional probabil-
ity equation pi j (n) = P{Xm+n = j |Xm = i}, (m ≥ 0, n ≥ 1)
to calculate the probability of transition from one state to
another one, which is not appropriate for randomly generated
trajectory data having relatively few movement rules. How-
ever, PrefixTP and AprioriTP can be used to discover different
kinds of trajectory data within diverse environments.

3) Estimation of n-Steps Prediction: Long-term prediction
is a challenging and ongoing research problem in trajectory
prediction. In this set of experiments, the PA of distinct
algorithms for n-step predictions are evaluated. Essentially,
this refers to predicting the next n-step locations. For this
set of experiments, 1,000 trajectories were randomly selected
from the testing set, and the average PA value was used to
evaluate the performance of the given algorithms. The results
are presented in Fig. 5, where x-axis represents the number
of prediction steps, and y-axis represents PA.

As we can see from Fig. 5 that: (1) PrefixTP outperforms
1st-order Markov and 2nd-order Markov models with the
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Fig. 5. Prediction accuracy comparison by n-steps among algorithms.

number of prediction steps. The longer the time interval of pre-
diction, the bigger the gap between PrefixTP and HMM-based
TP approaches, with an average gap of 107.4% and 29.4%,
respectively. This is primarily because PrefixTP selects candi-
date locations that satisfy the requirement of minimum support
count, and frequent sequential patterns with variable lengths
are mined based on the prefix-projection approach, which
requires that the candidate postfix sequence mined in each
iteration is frequent. In contrast, HMM-based TP methods
only take into account the effect of fixed length trajectories
in the training set, which is not appropriate for randomly
generated GPS data with variable lengths. (2) As the number
of prediction step n < 4, AprioriTP wins the HMM-based TP
algorithms, however, when n is designated to be a large value,
its PA drops drastically, and AporioriTP obtains the worst
prediction accuracy. The evidence for this claim is AprioriTP
can generate a large volume of candidate sequences when
predicting long-term trajectory sequential patterns, which will
greatly degrade its performance. (3) By experiments, we find
there are less frequent trajectory sequential patterns of con-
nected vehicles whose length are longer than four steps, and
this phenomena agrees with the real-world situation. Because
drivers usually predict one or two steps to future destination,
and the length of prediction steps is no longer than three.
For long-term prediction, the number of frequent trajectory
sequential patters is small, which implies there is not enough
knowledge for connected vehicles to forecast future locations,
so for long-term predictions there is a low prediction accuracy
for all algorithms.

4) Effect Analysis of Support Count on Accuracy: For
the PrefixTP, the support count represents the number of a
trajectory sequential patterns in a training set, and the selection
of this parameter will have an effect on the accuracy of
prediction. In this set of experiments, the PA of PrefixTP was
observed, under different training sets, and as the support count
was increased. The results are given in Fig. 6, where x-axis is
the number of support counts, and the y-axis represents PA.

By Fig. 6, the PA of PrefixTP, when applied to different
datasets, fluctuates as the number of support counts grow.
A trend characterized by a rising initially, and then a fall,
in all datasets, was observed. We can find that PrefixTP
maintains a high PA value when the support count is set
between two and four. Empirically, based on the given results,

Fig. 6. Prediction accuracy of PrefixTP under different datasets.

TABLE IV

PREDICTION TIME COST OF PREFIXTP

Fig. 7. Prediction time comparison of different algorithms. (a) Different
number of trajectories. (b) Different data sets.

it can concluded that an optimal support count will have a
positive effect, an increase, in the number of trajectories in a
training set. If the support count is enlarged, which means the
requirement of frequent trajectory patterns is more strict, and
discovered trajectory sequences need to be more frequent, then
the number of discovered trajectory sequences is less than the
case when the support count value is small, so the prediction
accuracy is lower when the support count is enlarged.

C. Time Performance Analysis
Prediction time is an important metric in real-time location

tracking and forecasting. In the given series of experiments,
the prediction time of various algorithms are observed as
the number of trajectories increased. Results are presented
in Table IV. The response time is only 0.778 seconds for
forecasting 6,000 trajectories, which suggests that PrefixTP
has an exceptional runtime performance, and can satisfy the
requirement for real-time prediction.

Additionally, in these experiments, we have compared the
performance (relative to time) of PrefixTP with AprioriTP and
HMM-based TP approaches. Fig. 7(a) shows the cost in time
of various relevant algorithms as the number of trajectories
increase in the testing set. We also compare the efficiency of
different algorithm on nine randomly selected testing datasets,
and the results are shown in Fig. 7(b).
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Fig. 8. Training time comparison on different datasets.

By Fig. 7, the time cost of PrefixTP is slightly higher than
that of HMM-based TP models, but the overall time overhead
of PrefixTP is maintained at the millisecond level, which can
be acceptable for real-time forecasting systems. This slight
increase in time can be explained by the recursion needed for
mining frequent sequential patterns. However, as for AprioriTP
algorithm, the time cost is very high, is about 5.65 times
higher than that of PrefixTP according to Fig. 7(a). This is
primarily because Apriori-like TP algorithm will generate a
huge number of candidate sequences that makes the time
grows rapidly for discovering frequent sequential patterns.
Another reason is that AporioriTP needs to scan trajectory
databases for multiple times which is time-intensive.

In order to further evaluate the time performance of these
algorithm, we observe the training time of the algorithms on
the previously used nine datasets given in Fig. 7(b), and the
results are shown in Fig. 8.

By Fig. 8, we can see that the training time of PrefixTP
is similar to that of 2nd-order Markov model, and is a little
higher than that of 1st-order Markov model. This is because
HMM-based prediction models spend much time on calcu-
lating the transition probability matrix of the upper layer of
the trajectory chain and the transition probability matrix com-
posed of probability values from hidden states to observable
states [2], which is time consuming. However, the AprioriTP
algorithm needs to spend much time on generating potentially
huge set of candidate sequences.

D. Performance Evaluation of Matching Strategies

In Section V-C, we have applied three trajectory matching
strategies to infer possible locations of objects, and we evaluate
the prediction accuracy via different matching strategies by
using the large-scale trajectory dataset in Section VI-B. The
results are given in Fig. 9.

We can see that: by using all these three matching strate-
gies (denoted by All matching), we can obtain the highest
PA value, because PrefixTP can find all frequent sequential
patterns by applying complete matching, tail matching and
longest tail matching strategies. On the contrary, PrefixTP
beyond complete matching strategy obtains the worst PA
value, and the PA value of longest tail strategy is between
complete and tail matching strategy. As aforementioned in
Section V-C, this is because complete matching strategy is
more strict than other two strategies, tail matching strategy can

Fig. 9. Prediction accuracy comparison of different matching strategies by
PrefixTP.

discover movement rules even for very short partial trajectory,
and longest tail matching is a compromise between the above
two strategies.

VII. CONCLUSION

This study has worked to propose a novel, scalable and
effective trajectory sequential mining approach. The approach
includes the development of a TP algorithm for connected
vehicles, called PrefixTP, which examines only the prefix
subsequences and projects only their corresponding postfix
subsequences into projected sets. The systematic performance
study demonstrates that PrefixTP is accurate at predict-
ing long-term trajectory sequences, and can be generalized
more effectively relative to various and differing trajectory
data, when compared to HMM-based and Apriori-like TP
approaches. In addition, the experiments demonstrate that
PrefixTP can respond in real-time.

PrefixTP represents an innovative methodology for effec-
tively predicting sequential patterns for connected vehicles.
The phase for identifying subsets of trajectory sequential
patterns is a recursive mining process, which can be time
intensive. In future work, we will focus on reducing the size
of the projected sets, such as applying a bi-level projection
scheme for improving the performance of sequential patterns
mining.
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